

Graph $x-4=-(y+2)^{2}$. Give the domain and range.

The graph has vertex $(4,-2)$ and opens to the left because $a<0$.

The graph is a reflection of the graph of $x=y^{2}$ across the y-axis with a translation 4 units to the right and 2 units down. Its axis is the line $y=-2$.

6.1 Example 1 Graphing a Parabola with Horizontal Axis

 (cont.)Use the vertex and axis along with a few additional points to plot the graph.

\boldsymbol{x}	\boldsymbol{y}
-5	1
0	0
4	-2
0	-4
-5	-5

Domain: $(-\infty, 4]$ Range: $(-\infty, \infty)$
6.1 Example 2 Graphing a Parabola with Horizontal Axis (page 607)
Graph $x=\frac{1}{2} y^{2}-4 y+6$. Give the domain and range.
Complete the square on y to find the vertex and the axis.

$$
\begin{aligned}
x & =\frac{1}{2} y^{2}-4 y+6 & & \\
& =\frac{1}{2}\left(y^{2}-8 y+\right)+6 & & \text { Factor out } \frac{1}{2} . \\
& =\frac{1}{2}\left(y^{2}-8 y+16-16\right)+6 & & \text { Complete the square. } \\
& =\frac{1}{2}\left(y^{2}-8 y+16\right)-\frac{1}{2}(16)+6 & & \text { Distributive property } \\
& =\frac{1}{2}(y-4)^{2}-2 \Rightarrow x+2=\frac{1}{2}(y-4)^{2} & & \text { Factor; simplify. }
\end{aligned}
$$

The graph has vertex $(-2,4)$ and opens to the right.

6.1 Example 3(a) Determining Information About Parabolas From Their Equations (page 609)

Find the focus, directrix, vertex, and axis of the parabola $x^{2}=-4 y$. Then use the information to graph the parabola.

$$
x^{2}=-4 y \Rightarrow x^{2}=4 p y \Rightarrow 4 p=-4 \Rightarrow p=-1
$$

Since the x-term is squared, the parabola is vertical, with focus $(0, p)=(0,-1)$ and directrix $y=-p=-1$.

$$
\text { Vertex: }(0,0) \quad \text { Axis: } x=0
$$

6.1 Example 3(b) Determining Information About Parabolas From Their Equations (page 610)

Find the focus, directrix, vertex, and axis of the parabola $y^{2}=12 x$. Then use the information to graph the parabola.

$$
y^{2}=12 x \Rightarrow y^{2}=4 p x \Rightarrow 4 p=12 \Rightarrow p=3
$$

Since the y-term is squared, the parabola is horizontal, with focus $(p, 0)=(3,0)$ and directrix $x=-p=-3$.

$$
\text { Vertex: }(0,0)
$$

Axis: $y=0$

6.1 Example 2 Graphing a Parabola with Horizontal Axis

Graphing calculator solution

Write two equations by solving for y using the equation found in the algebraic solution.

$$
\begin{aligned}
& x+2=\frac{1}{2}(y-4)^{2} \Rightarrow 2 x+4=(y-4)^{2} \Rightarrow \\
& \pm \sqrt{2 x+4}=y-4 \Rightarrow 4 \pm \sqrt{2 x+4}=y
\end{aligned}
$$

Graph the two equations. Their union is the graph of $x=\frac{1}{2} y^{2}-4 y+6$.

6.1 Example 3(a) Determining Information About Parabolas From Their Equations (cont.)

Use the vertex and axis along with a few additional points to plot the graph.

\boldsymbol{x}	\boldsymbol{y}
-4	-4
-2	-1
0	0
2	-1
4	-4

$$
\text { Domain: }(-\infty, \infty) \quad \text { Range: }(-\infty, 0]
$$

Copyight © 2008 Pearson Addison-Wesley. All ights reserved. \quad 6-10

Example 4(a) Writing Equations of Parabolas (page 611)

Write an equation for a parabola with focus $\left(0, \frac{3}{4}\right)$ and vertex at the origin.

A parabola with focus $\left(0, \frac{3}{4}\right)$ and vertex at the origin is a vertical parabola with equation of the form $x^{2}=4 p y$.

$$
\begin{aligned}
& p=\frac{3}{4} \Rightarrow \text { the parabola opens up. } \\
& x^{2}=4\left(\frac{3}{4}\right) y \Rightarrow x^{2}=3 y \text { or } y=\frac{1}{3} x^{2}
\end{aligned}
$$

Example 5 Writing an Equation of a Parabola (page 611)

Write an equation for the parabola with vertex ($-2,3$) and focus ($-2,2$), then graph the parabola. Give the domain and range.

The focus is below the vertex, so the axis is vertical and the parabola opens downward.

The distance between the vertex and the focus is
$3-2=1$. Since the parabola opens downward, $p=-1$.
The equation is of the form $(x-h)^{2}=4 p(y-k)$.

6.1 Example 6(a) Modeling the Reflective Property of Parabolas (page 613)

The Parkes radio telescope has a parabolic dish shape with diameter 210 ft and depth 32 ft . The graph below models a cross section of the telescope. Using the graph, find the equation of the directrix of the parabola.

The equation of the parabola is $x^{2}=4 p y$.

Example 4(b) Writing Equations of Parabolas (page 611)

Write an equation for a parabola with a horizontal axis, vertex at the origin, and passing through the point ($-4,-8$).

A parabola with a horizontal axis, vertex at the origin, and passing through the point $(-4,-8)$ is a horizontal parabola with equation of the form $y^{2}=4 p x$.

Substitute $(-4,-8)$ into $y^{2}=4 p x$ to solve for p.

$$
(-8)^{2}=4 p(-4) \Rightarrow 64=-16 p \Rightarrow-4=p
$$

The equation of the parabola is $y^{2}=-16 x$.

Example 5 Writing an Equation of a Parabola (cont.)

Substitute $p=-1, h=-2$ and $k=3$ to find the equation.

$$
\begin{aligned}
(x-h)^{2} & =4 p(y-k) \\
(x-(-2))^{2} & =4(-1)(y-3) \Rightarrow(x+2)^{2}=-4(y-3)
\end{aligned}
$$

Use the vertex and axis along with a few additional points to plot the graph.

\boldsymbol{x}	y
-6	-1
-4	2
-2	3
0	2
4	-6

$$
(x+2)^{2}=-4(y-3)
$$

Domain: $(-\infty, \infty)$
Range: $(-\infty, 3]$

6-16

6.1 Example 6(a) Modeling the Reflective Property of Parabolas (cont.)

Substitute $x=105$ and $y=32$, then solve for p.

$$
\begin{aligned}
x^{2} & =4 p y \\
(105)^{2} & =4 p(32) \\
11,025 & =128 p \Rightarrow p=\frac{11,025}{128} \approx 86.1
\end{aligned}
$$

The equation of the directrix is $y=-86.1$.

6.1 Example 6(b) Modeling the Reflective Property of

 Parabolas (page 613)What is the width of the parabolic dish 25 ft above the vertex?

From part (a), $p=\frac{11,025}{128}$, so the equation of the parabola is $x^{2}=4\left(\frac{11,025}{128}\right) y=\frac{11,025}{32} y$.

Let $y=25$, then solve for x.

$$
x^{2}=\frac{11,025}{32}(25) \Rightarrow x= \pm 92.8
$$

The width of the dish is $2(92.8) \approx 185.6 \mathrm{ft}$.

Graph the ellipse $4 x^{2}+25 y^{2}=100$. Find the coordinates of the foci, and give the domain and range.
Write the equation in standard form: $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{2^{2}}=1$
Center: $(0,0), a=5, b=2$, so the intercepts are $(\pm 5,0)$ and $(0, \pm 2)$, and the major axis is horizontal.

Find the foci:

$$
\begin{aligned}
& \quad c^{2}=a^{2}-b^{2} \Rightarrow c^{2}=25-4 \Rightarrow c^{2}=21 \Rightarrow c=\sqrt{21} \\
& \text { Foci: }(\pm \sqrt{21}, 0)
\end{aligned}
$$

Graph the ellipse $49 x^{2}+9 y^{2}=441$. Find the coordinates of the foci, and give the domain and range.
Write the equation in standard form: $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{7^{2}}=1$
Center: $(0,0), a=3, b=7$, so the intercepts are $(\pm 3,0)$ and $(0, \pm 7)$, and the major axis is vertical.

Find the foci:

$$
\begin{aligned}
& c^{2}=a^{2}-b^{2} \Rightarrow c^{2}=49-9 \Rightarrow c^{2}=40 \Rightarrow c=\sqrt{40}=2 \sqrt{10} \\
& \text { Foci: }(0, \pm 2 \sqrt{10})
\end{aligned}
$$

Copyrigh © 2008 Pearson Addison-Wesley. All rights resenved.

6.2 Ellipses

Equations and Graphs of Ellipses - Translated Ellipses * Eccentricity - Applications of Ellipses
6.2 Example 1 (a) Graphing Elipses Centered at the Origin
$\left.\begin{array}{rl}6.2 \text { Example } 1(b) \text { Graphing Elipses Centered at the Origin } \\ \text { (cont.) }\end{array}\right)$

6.2 Example 2 Writing the Equation of an Ellipse (page 619)

Write the equation of the ellipse having center at the origin, foci at $(-5,0)$ and $(5,0)$, and major axis with length 18 units.

Since the major axis has length 18 units, $2 a=18 \Rightarrow a=9$.

$$
c=5, \text { so } c^{2}=a^{2}-b^{2} \Rightarrow 25=9^{2}-b^{2} \Rightarrow b^{2}=56 .
$$

The equation of the ellipse is $\frac{x^{2}}{9^{2}}+\frac{y^{2}}{56}=1 \Rightarrow \frac{x^{2}}{81}+\frac{y^{2}}{56}=1$.

$\frac{y}{3}=-\sqrt{1-\frac{x^{2}}{4}}$
Domain: $[-2,2]$ Range: $[-3,0]$

6.2 Example 3 Graphing a Half-Ellipse (page 620)

Graph $\frac{y}{3}=-\sqrt{1-\frac{x^{2}}{4}}$. Give the domain and range.
Square both sides of the equation:

$$
\frac{y^{2}}{9}=1-\frac{x^{2}}{4} \Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

This is the equation of a vertical ellipse with center $(0,0)$, x-intercepts ± 2 and y-intercepts ± 3.

Since $\frac{y}{3}=-\sqrt{1-\frac{x^{2}}{4}}$, the only possible values of y are those making $\frac{y}{3} \leq 0 \Rightarrow y \leq 0$.

Copyright © 2008 Pearson Addison-Wesley. All inghts reserved.

6.2 Example 4 Graphing an Ellipse Translated Away From the Origin (page 621)

Graph $\frac{(x-3)^{2}}{36}+\frac{y^{2}}{9}=1$. Give the domain and range.

The center is $(3,0), a=6$, and $b=3$.
The vertices are 6 units to the right and 6 units to the left of the center at $(-3,0)$ and $(9,0)$.

The endpoints of the minor axis are 3 units below and 3 units above the center at $(3,3)$ and $(3,-3)$.

6.2 Example 5(a) Finding Eccentricity from Equations of

Ellipses (page 622)

Find the eccentricity of the ellipse $\frac{x^{2}}{81}+\frac{y^{2}}{100}=1$.

Since $100>81, a^{2}=100$, which gives $a=10$.

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}}=\sqrt{100-81}=\sqrt{19} \\
e=\frac{c}{a}=\frac{\sqrt{19}}{10} \approx .44
\end{gathered}
$$

6.2 Example 5(b) Finding Eccentricity from Equations of

 Ellipses (page 622)Find the eccentricity of the ellipse $\frac{x^{2}}{11}+\frac{y^{2}}{6}=1$.
Since $11>6, a^{2}=11$, which gives $a=\sqrt{11}$.

$$
\begin{gathered}
c=\sqrt{a^{2}-b^{2}}=\sqrt{11-6}=\sqrt{5} \\
e=\frac{c}{a}=\frac{\sqrt{5}}{11} \approx .67
\end{gathered}
$$

6.2 Example 6 Applying the Equation of an Ellipse to the Orbit of a Planet (cont.)

The maximum distance is $a+c$ and the minimum distance is $a-c$.

$$
\begin{aligned}
a+c & =507.4 \Rightarrow c=507.4-a \\
e=\frac{c}{a} \Rightarrow \frac{507.4-a}{a} & =.0489 \\
507.4-a & =.0489 a \\
a & \approx 483.75 \\
c=507.4-483.75 & =23.65 \\
\text { so } a-c=483.7-23.65 & \approx 460.1
\end{aligned}
$$

The closest distance Jupiter comes to the sun is about 460.1 million miles.

6.2 Example 6 Applying the Equation of an Ellipse to the Orbit of a Planet (page 622)

The orbit of Jupiter is an ellipse with the sun at one focus. The eccentricity of the ellipse is .0489 , and the maximum distance of Jupiter from the sun is 507.4 million mi. Find the closest distance that Jupiter comes to the sun. (Source: The World Almanac and Book of Facts.)

The figure shows the orbit of Jupiter with the origin at the center of the ellipse and the sun at one focus. Jupiter is closest to the sun when Jupiter is at the right endpoint of the major axis and farthest from the sun when Jupiter is at the left endpoint.

NOT TO SCALE
6.2 Example 7 Modeling the reflective Property of Ellipses (page 623)

If a lithotripter is based on the ellipse

$$
\frac{x^{2}}{40}+\frac{y^{2}}{24}=1
$$

determine how many units both the kidney stone and the source of the beam must be placed from the center of the ellipse.
The kidney stone and the source of the beam must be placed at the foci. $a^{2}=40$ and $b^{2}=24$ so
$c=\sqrt{a^{2}-b^{2}}=\sqrt{40-24}=\sqrt{16}=4$.
The foci are at $(-4,0)$ and $(4,0)$.
The kidney stone and the source must be placed on a line 4 units from the center.
Copyright © 2008 Pearson Addison-Westey. All ights reserved.

6.3 Example 1 Using Asymptotes to Graph a Hyperbola

(page 628)
Graph $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$. Give the domain and range.
The equation is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, so it is centered at $(0,0)$ and has branches opening to the left and right.

The vertices of the hyperbola are $(2,0)$ and $(-2,0)$ since $a=2$.
The equations of the asymptotes are $y= \pm \frac{5}{2} x$.
If $x=2$, then $y= \pm 5$. If $x=-2$, then $y= \pm 5$. The corners of the fundamental rectangle are $(2,5),(-2,5),(-2,-5)$, and $(2,-5)$.
6.3 Example 1 Using Asymptotes to Graph a Hyperbola (cont.)
Find the foci:

$$
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=4+25 \Rightarrow c^{2}=29 \Rightarrow c=\sqrt{29}
$$

The foci are $(-\sqrt{29}, 0)$ and $(\sqrt{29}, 0)$.

Domain: $(-\infty,-2] \cup[2, \infty)$
Range: $(-\infty, \infty)$

6.3 Example 2 Graphing a Hyperbola (page 630)

Graph $16 y^{2}-25 x^{2}=400$. Give the domain and range.
Divide both sides of the equation by 400 to obtain

$$
\frac{y^{2}}{25}-\frac{x^{2}}{16}=1 \Rightarrow \frac{y^{2}}{5^{2}}-\frac{x^{2}}{4^{2}}=1
$$

The equation is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, so it is centered at $(0,0)$ and has branches opening upward and downward.

The vertices of the hyperbola are $(0,5)$ and $(0,-5)$ since $a=5$.
The equations of the asymptotes are $y= \pm \frac{5}{4} x$.
6.3 Example 2 Graphing a Hyperbola (cont.)

Domain: $(-\infty, \infty) \quad$ Range: $(-\infty,-5] \cup[5, \infty)$

Graphing calculator solution

Solve $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$ for $y: y= \pm \frac{5}{2} \sqrt{x^{2}-4}$

The union of the two graphs is the graph of $\frac{x^{2}}{4}-\frac{y^{2}}{25}=1$.

6.3 Example 2 Graphing a Hyperbola (cont.)

The corners of the fundamental rectangle are $(-4,5)$, $(4,5),(4,-5)$, and $(-4,-5)$.

Find the foci:

$$
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=25+16 \Rightarrow c^{2}=41 \Rightarrow c=\sqrt{41}
$$

The foci are $(0,-\sqrt{41})$ and $(0, \sqrt{41})$.

6.3 Example 3 Graphing a Hyperbola Translated Away From

the Origin (page 631)

Graph $\frac{(x-2)^{2}}{16}-(y+4)^{2}=1$. Give the domain and range.
The equation is of the form $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ where $h=2, k=-4, a=4$, and $b=1$. The graph opens to the right and left.

The vertices are 4 units left and right of the center (2, -4) at $(6,-4)$ and $(-2,-4)$.

The equations of the asymptotes are

$$
y=k \pm \frac{b}{a}(x-h) \Rightarrow y=-4 \pm \frac{1}{4}(x-2)
$$

Copyrigh © 2008 Pearson Addison-Wesley. All rights reserved.
6.3 Example 3 Graphing a Hyperbola Translated Away From the Origin (cont.)
The corners of the fundamental rectangle are $(6,-3)$, $(6,-5),(-2,-3)$, and $(-2,-5)$.

Find the foci:

$$
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=16+1 \Rightarrow c=\sqrt{17}
$$

The foci are $\sqrt{17}$ units left and right of the center at $(2-\sqrt{17},-4)$ and $(2+\sqrt{17},-4)$.

Find the eccentricity of the hyperbola $\frac{y^{2}}{100}-\frac{x^{2}}{81}=1$.

$$
\begin{aligned}
a^{2} & =100, \text { so } a=10 . \\
c^{2}=a^{2}+b^{2} & \Rightarrow c^{2}=100+81 \Rightarrow c=\sqrt{181} \\
e & =\frac{c}{a}=\frac{\sqrt{181}}{10} \approx 1.3
\end{aligned}
$$

Find the equation of the hyperbola with eccentricity 3 and foci at $(-2,5)$ and ($-2,-3$).

The foci have the same x-coordinate, so the hyperbola is vertical.

The center of the hyperbola is halfway between the foci, at $(-2,1)$.

The distance from each focus to the center is 4 , so $c=4$.

6.3 Example 5 Finding the Equation of a Hyperbola (cont.)

$$
a=\frac{4}{3} \Rightarrow a^{2}=\frac{16}{9}, b^{2}=\frac{128}{9}, h=-2, \text { and } k=1
$$

The equation of the hyperbola is $\frac{(y-1)^{2}}{\frac{16}{9}}-\frac{(x+2)^{2}}{\frac{128}{9}}=1$ or $\frac{9(y-1)^{2}}{16}-\frac{9(x+2)^{2}}{128}=1$.

6.4 Summary of the Conic Sections

Characteristics - Identifying Conic Sections - Geometric Definition of Conic Sections

6.4 Example 1(a) Determining Types of Conic Sections from

 Equations (page 639)Determine the type of conic section represented by the equation and graph it.

$$
x^{2}-4 x+y^{2}+2 y=-5
$$

Complete the squares on x and y :

$$
\begin{aligned}
\left(x^{2}-4 x+4\right)+\left(y^{2}+2 y+1\right) & =-5+4+1 \\
(x-2)^{2}+(y+1)^{2} & =0
\end{aligned}
$$

This is the equation of a circle centered at $(2,-1)$ with radius 0 , that is, the point $(2,-1)$.

6.4 Example 1(b) Determining Types of Conic Sections from Equations (page 639)

Determine the type of conic section represented by the equation and graph it.

$$
9 x^{2}=144-16 y^{2}
$$

Write the equation in standard form:
$9 x^{2}=144-16 y^{2} \Rightarrow 9 x^{2}+16 y^{2}=144 \Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
The equation is in the form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ with $a=4, b=3, h=0$, and $k=0$.

This is the equation of an ellipse centered at (0,0) with x-intercepts $(-4,0)$ and $(4,0)$ and y-intercepts $(0,-3)$ and $(0,3)$.
Copyright © 2008 Pearson Addison-Westey. All rights reserved.
6.4 Example 1(c) Determining Types of Conic Sections from

Equations (page 639) \begin{tabular}{l}
Determine the type of conic section represented by

the equation and graph it.

$\qquad 2 x+y^{2}-10 y+17=0$

Since only one variable is squared, the equation

represents a parabola. Get the term with x (the

variable that is not squared) alone on one side.

\qquad| $y^{2}-10 y+17$ | $=-2 x$ |
| ---: | :--- |

\qquad| $\left(y^{2}-10 y+25\right)+17$ | $=-2 x+25$ complete the square. |
| ---: | :--- |
| $(y-5)^{2}$ | $=-2 x+8$ |
| $(y-5)^{2}$ | $=-2(x-4)$ |

coprs4
\end{tabular} Equations (cont.)

The equation is of the form $x-h=a(y-k)^{2}$ with $a=-\frac{1}{2}, h=4$, and $k=5$. It is a parabola with vertex $(4,5)$ and horizontal axis $y=5$. It opens to the left. Use the vertex and axis and a few additional points to plot the graph.

x	y
-4	1
2	3
4	5
2	7
-4	9

6.4 Example 1(d) Determining Types of Conic Sections from

 Equations (cont.)The equation is of the form $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
with $a=2, b=5, h=-3$, and $k=-2$.

$$
c^{2}=a^{2}+b^{2} \Rightarrow c^{2}=2^{2}+5^{2} \Rightarrow c=\sqrt{29}
$$

The equations of the asymptotes are

$$
y=k \pm \frac{b}{a}(x-h) \Rightarrow y=-2 \pm \frac{2}{5}(x+3)
$$

This is the equation of a hyperbola centered at $(-3,-2)$, vertices $(-3,0)$ and $(-3,-4)$, asymptotes $y=-2 \pm \frac{2}{5}(x+3)$ and foci $(-3,-2+\sqrt{29})$ and $(-3,-2-\sqrt{29})$.

$$
\begin{aligned}
& \text { 6.4 Example 2 Determining Types of Conic Sections from } \\
& \text { Equations (page 639) }
\end{aligned} \quad \begin{aligned}
& \text { Identify the graph of } 9 x^{2}-72 x+25 y^{2}-100 y=-19 . \\
& 9 x^{2}-72 x+25 y^{2}-100 y=-19 \\
& 9\left(x^{2}-8 x+16\right)+25\left(y^{2}-4 y+4\right)==-19+9(16)+25(4) \\
& \begin{aligned}
\text { Factor, then complete the } \\
\text { squares on } x \text { and } y .
\end{aligned} \\
& 9(x-4)^{2}+25(y-2)^{2}=225 \\
& \frac{(x-4)^{2}}{25}+\frac{(y-2)^{2}}{9}=1
\end{aligned}
$$

This is the equation of an ellipse centered at $(4,2)$ with major axis endpoints $(-1,2)$ and $(9,2)$ and minor axis endpoints $(4,-1)$ and $(4,5)$.
6.4 Example 1(d) Determining Types of Conic Sections from Equations (page 639)

Determine the type of conic section represented by the equation and graph it.

$$
-4 x^{2}-24 x+25 y^{2}+100 y=36
$$

Complete the squares on x and y.

$$
\begin{aligned}
-4 x^{2}-24 x+25 y^{2}+100 y & =36 \\
-4\left(x^{2}+6 x+9\right)+25\left(y^{2}+4 y+4\right) & =36-36+100 \\
-4(x+3)^{2}+25(y+2)^{2} & =100 \\
\frac{(y+2)^{2}}{4}-\frac{(x+3)^{2}}{25} & =1
\end{aligned}
$$

